
Securing Web Applications
with Predicate Access

Control
Zhaomo Yang Kirill Levchenko

Observation 1: Vulnerabilities

Web applications are broken. There are so many
vulnerabilities!

Observation 2: Access Control

Observation 2: Access Control

Observation 2: Access Control

Previous Work
● Nemesis [4]
● GuardRails [5]
● CLAMP [6]
● Authorization views [1]
● Parametrized views with authentication token [2]
● Oracle’s Virtual Private Database

...

Question?

What hinders the adoption of
security mechanisms for web
applications?

Hypothesis

To be widely adopted, security
mechanisms must be first and foremost
easy to understand and use for
developers.

The plan
● Build it
- we built a security mechanism with usability in mind.

● Field it
- make it available to open source web app communities

● Evaluate
- measure adoption and efficacy

Build it
Build a mechanism in DBMS which protects
app users from each other.

Structure of Web Apps

Build it - Authentication

Problem: DBMS has no notion of application
users.

We need to authenticate application users to
DBMS

Toy Example
GradeBook
● Student: view his/her grades
● Teacher: view/post/update/ students’ grades

Authentication in Web Apps

In web apps, authentication usually involves
● Get user’s id and password;
● Query table to see if it is a registered application user;
- We call it the “authentication query”.

● If it is, save the identity; If not, deny login.

Example of Authentication Query

 SELECT user_id, instr FROM Users
 WHERE user_name = $1 AND
 pass_hash = SHA2(pass_salt || $2);

Build it - Authentication

Now our problem becomes: how to let the
DBMS know the current application user’s
identity.

Build it - Authentication Function

CREATE AUTHENTICATION FUNCTION

Requirement:
● Wrap the authentication query which returns the identity

of current application user

Example of Authentication function

 CREATE AUTHENTICATION FUNCTION Auth(TEXT, TEXT)
 RETURNS TABLE (user_id INTEGER, instr BOOLEAN)
 AS $$
 SELECT user_id, instr FROM Users
 WHERE user_name = $1 AND
 pass_hash = SHA2(pass_salt || $2);
 $$ LANGUAGE SQL;

Build it - Access Control

● Traditional SQL GRANT statement

GRANT [privilege] ON [table] TO [database user];

E.g.
 GRANT SELECT ON grades TO gradebook;

Build it - Access Control

● GRANT-WHERE statement proposed by [3]
 GRANT [privilege] ON [table] TO [database user]

 USING [referenced tables ...]

 WHERE [row-level predicate];

E.g.
 GRANT SELECT ON grades TO gradebook

 USING Auth

 WHERE Auth.instr = false AND

 Auth.user_id = grades.user_id;

Our Mechanism - Trust Boundary

Implementation
We implemented the mechanism as an
extension to PostgreSQL 9.2
● Temporary Rules
● Compiler

Implementation - Temporary Rules

● Rule System in PostgreSQL
In PostgreSQL, every query is rewritten against
the rules defined on the same table

Implementation - Translation

● How a GRANT-WHERE statement is
translated

 GRANT UPDATE ON Grades TO Gradebook

 USING Auth

 WHERE Auth.instr;

 CREATE RULE _UPDATE AS ON UPDATE TO Grades

 WHERE NOT EXISTS (SELECT 1 FROM Auth

 WHERE current_user = Gradebook AND Auth.instr)

 DO INSTEAD NOTHING;

Implementation - Temporary Rule

Implementation - Compiler

Evaluation
● Criteria: Is it expressive enough?
● Used our mechanism to protect Drupal 7.1

and Spree e-commerce

Evaluation
GRANT SELECT ON spree_payments TO mystore
USING Auth, spree_orders
WHERE Auth.is_admin = true
 OR (spree_orders.user_id = Auth.user_id
 AND spree_payments.order_id = spree_orders.id);

Evaluation - Performance

Task Without policy With policy

Drupal view article 0.44 s 0.54 s

Drupal edit article 1.29 s 1.61 s

Spree buy item 18.40 s 24.12 s

Evaluation - Result
App. Name CVE # Description

Drupal CVE-2012-1590 User permissions are not checked properly for unpublished forum nodes,
which allows remote authenticated users to obtain sensitive information
such as the post title via the forum overview page.

Drupal CVE-2012-2153 node_access is not added to queries thus queries are not rewritten
properly and restrictions of content access module are ignored.

Drupal CVE-2011-2687 Proper tables are not joined when node access queries are rewritten
thus access restrictions of content access module are ignored.

Spree No CVE ID By passing a crafted string to the API as the API token, a user may
authenticate as a random user, potentially an administrator.

Spree CVE-2013-2506 Mass assignment is not performed safely, which allows remote
authenticated users to assign any roles to themselves.

The plan
● Build it
- we built a security mechanism with usability in mind.

● Field it
- make it available to open source web app communities

● Evaluate
- measure adoption and efficacy

Thanks!

Reference
[1] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending Query Rewriting Techniques for Fine-Grained Access
Control. In

Proceedings of the 2004 ACM SIGMOD international conference on Management of Data, pages 551–562, June 2004.

[2] A. Roichman and E. Gudes. Fine-grained Access Control to Web Databases. In Proceedings of the 12th ACM
Symposium on Access Control Models and Technologies (SACMAT), pages 31–40, June 2007.

[3] S. Chaudhuri, T. Dutta, and S. Sudarashan. Fine Grained Authorization Through Prediidation Vulnerabilities in Web
Applications.

cated Grants. In Proceedings of the 23rd IEEE International Conference on Data Engineering (ICDE), pages 1174–1183,
April 2007.

[4] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing Authentication & Access Control Vulnerabilities in
Web Applications. In Proceedings of the 18th USENIX Security Symposium, August 2009.

[5] J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and D. Evans. GuardRails: A Data-Centric Web Application Security
Framework. In Proceedings of the 2nd USENIX Conference on Web Application Development (WebApps), June 2011.

[6] B. Parno, J. McCune, D. Wendlandt, D. Andersen, and A. Perrig. CLAMP: Practical Prevention of Large-Scale Data
Leaks. In Proceedings of the 30th IEEE Symposium on Security & Privacy, pages 154–169, 2009.

[7] J. Tudor, Web ApplicationVulnerability Statistics 2013, Context Information Security, June 2013.

